
AO-A096 654 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/S 12/1
AN INHONOGENEOUS QUASILINEAR HYPERBOLIC SYSTEM.IUI
NORV 80 C WANG OAA298C-0041

UNCLASSIFIED MRCTSR2137 N7U ~hEhII



II

MRC Technical Summnary Report # 2137

AN I14HOMOGENEOUS QUASILINEAR
eo HYPERBOLIC SYSTEM

SChing-hua Wang

0

Mathematics Research Center ium4

University of Wisconsin- Madison
610 Walnut StreetQ TEf

Madison, Wisconsin 53706 N ~ 2 3

November 1L980

(Received September 23, 1980)

LLJ Approved for public release
__j Distribution unlimited

10*onsored by

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park

North Carolina 27709 1 39 06



UNIVERSITY OF WISCONSIN-MADISON ( "

MATHEMATICS RESEARCH CENTER

AN INHOMOGENEOUS QUASIL!NEAR HYPERBOLIC SYSTEM

Ching-hua Wang -

Technical Summary Report # 2137

November 1980

ABSTRACT

We consider quasilinear hyperbolic partial differential

equations modeling ideal gas flow under various physical effects.

When these effects are represented as Lipschitz continuous

functions of the states, solutions to the initial value problem

are shown to exist globally in time. Our analysis is based on

the random choice method which generalizes the Glimm scheme for

hyperbolic conservation laws.

When the effects are strongly dissipative then the flow

decays exponentially to a constant state as time tends to

infinity.
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SIGNIFICANCE AND EXPLANATION

We study the initial value problem for quasilinear hyper-

bolic system of the following form:

1
+u x - U (u,v,x,t)

at ax

av au V (u,v,x,t)
at ax

The system models ideal gas flow where U and V represent

physical effects such as damping and external moving force.

Suppose that the initial data (u(x,O),v(x,O)) have bounded

total variation, and U and V are Lipschitz continuous

functions of u and v. Then the initial value problem has

an admissible weak solution. When U and V represent strong

dissipative effects, then the solution decays to a constant

state as t tends to infinity. Our analysis is based on the

random choice method which generalizes the Glimm scheme for

conservation laws.

Our assumptions are general enough to include several

important physical effects. Moreover, the random choice

method can be applied to more general quasilinear hynerbolic

systems as an effective numerical scheme.

The responsibility for the wording and views expressed in this
descriptive summary lies with Mfr, and not with the author of
this report.



AN INHOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEM

Ching-hua Wang

INTRODUCTION

We consider the initial value problem for the inhomogeneous

hyperbolic system

au + a = U (u,v,x,t)I v - u
- Du = V (u,vx,t) (0.1)

(u,v) (x,o) = (U0 (X), v (x)) (0.2)

0r

Here u (x) and v (x) are bounded functions with bounded
0 .0

total variation, v0 (x) has a positive lower bound. It is

assumed that there exists a constant M > 0 such that U and V

do not depend on x for jxl > M . U and V are smooth

functions of u,v, x and t

By the Riemann invariants

r = u + log v s = u - log v (0.3)

the system (0.1) can be diaglized as

r 1 3r=T- 7 T- =R(r,s,xt)
(0.4)s 1 3s= -

a s + 1 as s(r,sx,t)

where R(r,sfx,t)=U f S(rs,x,t) = - " (UV),(UV)(r+s r-s

Throughout this paper we also assume that there exist two

constants K1, K2 such that

Sponsored by the United States Army under Contract No. DAAG29-80-
C-0041.



2.

IR(rl,SlX,t) - R(r 2 ,s 2 ,x,t)I < Kl(Irl-r 2 1 + 1Sl-S21)

IS(r 1 1 xlxt) -S(r 2 1 s 2 ,x,t) I KI(1rl-r 2 1 + 1sl-s 2 1)

When (U,V) (0,0), system (0.1) reduces to the following

system

B' u I.

irt- ax~ -0
(0.7)

3 au =

The initial boundary value problem of (0.7) has been solved by

Nishida T. [6]. When U and V do not depend on x and t, the

global solution of (0.1 and (0.2) has been constructed by Ying

Lung-an and Wang Ching-hua [7]. For general inhomogeneous system

au f(u) ,t,u) (0.8)

Ying Lung-an and Wang Ching-hua [81 have proved the existence of

the global solution of initial value problem of system (0.8) for

g(x,t,u) = g(u) e- Kt . When g does not depend on t, Liu Tai-Ping [5]

has constructed global solutions for system (0.8) and studied their

asymptotic behavior.

In general (0.1) and (0.2) does not possess smooth solutions,

and we look for weak solutions in O<t<T, i.e., solutions satisfying
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+cc

(ut + + U* )dxdt + u0 (x) (x,0) dx - 0 (0.9)

0<t<T -=

(VPt- u~i + V*)dxdt + V0()x, dx = 0 (0.10)

O<t<T

for any smooth functions * and t with compact support in O<t<T.

The purpose of this paper is to prove the existence of the

weak solution for (0.1) and (0.2) and study their asymptotic

behavior as the time variable t tends to infinity.

IP

II
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1.Difference Scheme

We now describe the difference scheme we use for solving

(0.1) and (0.2), which is the generalization of one in [2] and

[7). Randomly choose an equidistributed sequence a={a i ) in

(-1,1) and mesh length Axx% At=h satisfying the Courant-

Friedrich-Lewy condition

-const >~

for all v under consideration.

Let (i,)(x~t,"m+1, k, u2.  ~ rv) denote the solution

of the system (0.7) at the point ((rn+l) t, kh) with the

following initial data

[(U2 t Vt) x <(M+l) L.

(u,v)(x,kh) = 1 (1.1)1

1(Ur Vr) x >(m+l) I.

We take

exp V(fImltk)(t-kh)) (1.2)

as the approximation solution of the system (0.1) with the initial

data (1.1). In fact, using the Riemann invariants, we can rewrite

(1.2) in the following form

(r,s) -(i+R(i,i,(m+l)t,kh) (t-kh),g+S(i,i,(m+l)t,kh) (t-kh)) (1.3)
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The construction of the difference solution (u,v) (x,t)

proceeds as follows:

For each mesh length t. let (u2 Lo(x), vz.0 (x)) be

defined by the equation

(U (vx < - (21J + 1) Z

(U2. ' v2 1 0)(x)= Cu0 (mg) ,vo (mU.) forixl (If 1 n

(m-l) L<x<(m+l)k2, m--even

Cu0 (+oa),v (+o)), x > (([.2+ 1)1. (1.4)

Then we set

(u,v) (x,t) =(u,v) (x,t, M+l,o, (U2. o'~ Z, Xmg.) , (-u2  v .  (m+ 2) 2.))

for mi < x < (m+2)1., O<t<h, m- even (1.5)

Inductive ly suppose that (u,v) Cx,t) has been defined

for 0 < t < kh, we set

Cu,v) (xt= (u,v) (x,t, m+1,k,(u,v) ((m+ak )x, kh-O) (u,v) ((rn+2+ak ).,kh-O))

for rnt <x <(m+2)1., kh < t <Ck+l)h, m+k = even (1.6)-

It is obvious that (u,v) (x,t) depends on the mesh length h and

sequence a = { a1i but we omit the subscript.



2. Bounds for the Difference Equation

Because we use (u,v) defined in (1.2) as the building

block to build the difference solution of (0.1) and (0.2), we

have to do some estimates on it.

First we consider (U,J) (x,t, (m+l), k, u£,, urVr)

defined in Section 1. It is well known that there are three

constant region in the half plane t > kh, in which (Z,vz) equals

to (u,vL) , (Um,Vm) and (ur, vr) respectively. (umIV m ) is

connected to (u£,vI) by a 1-wave on the left and (Ur IVr) is

connected to (um,vm) by a 2-wave on the left. We define

(r Lst), (rm,sm) and (rr,sr) by means of (0.3) and define

Ar - rm - rE  As = s - sm (2.1)

P((uL,v), (ur,Vr)) = - min(o,Ar) - min (o,As) (2.2)

It has been proved [6] that

M((u Iv ),(uj1v j)) < P((uilvi),(ukvk))+P((ukvk),(ujUvj)) (2.3)

where ui,uk uj are any constants, v Ivk vj are any positive

constants

Let

r r I I as S r - £ (2.4)

we have
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ar u r + U (t-kh) + log(v exp -- (t-kh))-(u +U(t-kh)+log(v exp (t-kh)
t r r r rv

- (rr-r )  + (Rr -  R ) (t-kh)

6s t =U r + Ur(t-kh)-log(v r exp !V r (t-kh))-(u +U (t-kh)-log(v exp7E£(t-kh)) "

vr

- (s - s + (Sr - S (t-kh)

where UrVrRrSr evaluated at (urVr, (m+l)L,kh) and U., V1 I

Ri, S, evaluated at (utv,, (m+l) t, kh)

Therefore by (0.5) we have

Lemma 2.1Ia rt - r i < K1 (16rl + 16s1)(t-nh) (2.5-- (2.5) i

fS t - asi K1 (j6r I + 16sl)(t-nh)

In the same way as Lemma 3 in [7], we have

Lemma 2.2 If (Ur ,vr) can be connected to (u,,v,) by

only one wave, u*, u* are any constants and vr, v* are any

positive constants then

P((u*,v*), (u*,vr )) < p((u£vt),(ur,vr)) + 3(16r*-6rl+16s*-6sI) (2.6)

where 6r*=rr-r£=(u*+ log v )-(u*+ log v*),6*=(u*- log v*)-(u*- log v*)

whr s r r

In order to estimate the variations of r(x,t) and s(x,t),

we define some functionals.

For integers k > 1 , we define

F(kh+o) P((u,v) ((m+ak)X, kh-o), (u,v)((m+2+ak)t,kh-o)),
m+k=even



and for integer k > 0

F((k+l)h-0) ={P((u,v)((m-1 + ak+1)1,(k+1)h-0),
m+k=.even

(u,v) (m9X-0, (k+l) h-0) ) +

P( (u,v) (m2E-0, (k+l)h-0) ,(u,v) (mRt +0, ((k+l)h-0)) +

Lemma 2.3. For any given T > 0, V u(*,t) andV v(*,t) the total

variation of the difference solution (u(x,t), v(x,t)), are

bounded uniformly for the mesh length h, sequence a and t < T,

v(x,t) has positive lower bound uniformly for the same parameters

provided k< 1

Proof .Since U(u,v,x,t), V(u,v,x,t) do not depend on x for

jxi > M4 and (0.5) there exists a constant Mdepending only on

T and u0 (±co) , V 0 (±-o) such that I s(±-o,t) r 14 (±wo,t) <M for

0 < t < T, provided h is small enough.

It follows from that U(u,v,X,t), V(u,v,x,t) do not depend on

x for I xj >M again and (0. 6) that -

m+k-even

< h {IR( (r,s) fm+a )Z. kh-0) , (m-l)z ,kh) - R( (r,s) (m+ak)jt ,kh-0)
m+k=evenkk

(m+1)1 , kh) If LS ( (r, s) ((m+a k)L ,k -0) ,(m-l) ,kh)- S((r,s) (m+ak )Z ,kh-0),

(m+1)1 ,kh)P < 4K2 Mh
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It is obvious that V r(-,nh+O) + V s(-,nh+O)< 4F(nh+O) +4M

Then from Lemma 2.1, Lemma 2.2, we obtain

Ftn+1)h-O) < F(nh+O) + 6K h(V r(-,nh+O) + V s(-,nh+O)) + 4K2 Mh

< F(nh+O) (l-.24K 1h) + (24K 1Mh4-4K 2Mh)

Because F((n+1)h+Q) < F((n+l)h-O) we have

F((n+1)h+O) .< F(nh+O) (1+24K ih) + 24KMh+4K 2Mh)

*Let F(O) =P((u 0,lv0 )(mz),(u iv)((m+2)t)), then we obtain
m--even

F(O) <.. V - +_V so (.), where r 0C) = u 0( W4+ log V0 (xW,

s 0(W = U 0(W - log V0(xW.

After simple computation we get

F((n+l)h+O) < (F(O) + R+ K2M eK 1T

+W0 + O K 2M 24IT

< (Vr + s + -) efor (n+l)h < T

and thus

+0 + CO +w CO K2M 24K 1T
V r(.,nh+O) + V s(.,nh+O) < 4(V r0 +- v 0 + A~ + TKl)e 1+

+ 41 for nh <T
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It follows from that u0 (x) and r0 (x) are bounded functions

with bounded variation and v0(x) has a positive bound, Lemma 2.1
• 1

and h < that

1 +a

V r(.,t) + V s(.,t) < Q for t < T (2.7)

+G +W K2M 24K1T K2

where Q = 8 V r 0 () + V so(-) + M+ - )e + - M + 8 .

Therefore

Ir(x,t) I< 2M + Q, Is(x,t) < 2R + Q Iu(x,t)I< 2M + for t< T (2.8)

22

e < v(x,t) < e for t < T (2.9)

V u(.,t)< Q/2 for t < T (2.10)

1 2M+
V v(.,t) < T 2 for t < T (2.11)

Q.E.D.

Lemma 2.4. For any given X >0, there exists constant D depending

only on U,V, u0 (x), v0 (x), T and X such that

X
I(X) = f (lu(x't 2 ) - u(x'tl)i + Iv(x't 2 ) - v(x'tl) ) dx <

-X

< D((t 2 -t I ) + h), 0< ti, t 2 <T (2.12)

provided h is small enough.

~_ .-- "
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Proof: For definiteness suppose t1 < t2 and there is a pair

of integers n,k such that nh < t1 < (n+l)h <...< (n+k)h< t2

< (n+k+l)h. It is obvious that

I(X) < 11 (X) + 12(X)

where
k+l

II(X) = I (lu(x,(n+i)h+O) - u(x,(n+i)h-01 +
i=O I

+ Iv(x,(n+i)h+O)-v(x,(n+i)h-O)I )dx,

Xk
12 (X) = u (u(x,(n+i+l)h-0) - u(x,(n+i)h+O)I+i=0

--

+ I v(x, (n+i+l) h-O)-v(x, (n+i) h+O)I) dx

x

+f (Iu(xtl) - u(x,nh+O) I+Iv(x,ti) - v(x,nh+O) I)dx +

-x

+ (U(xt 2) - u(x, (n+k)h+0)I + Iv(xt 2) - v(x, (n+k)h+O) I)dx.
-x

It is not difficult to show that I(X)< 2([t2h t1 ]+ 3

sup _V u(.,t) + supV v(',t)

0<t<T 0<t<T

For xE((m-1)t,(m+1)t), m+n+i+l = even. Using (1.2) and (2.9)

we have
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u(x, (n+i~l) h-0) -u(x, (n~i) h+O) V u(x,(n+i)h+O) + IU*Ih.
(M-1)t

(m+l) ty(x,(n+i+l)h-0) - v(x,(n+i)h+0)j_< V (n+i)n+i)h+O) + 21V*1h

(m-1) I

provided h is small enough, where

(U* ,V*) = ((U,Vj(x,(n+i+l)h-0), m ., (n+i)h)

x
For f (I u(x,t 1 ) - u(x,nh+O)l + Iv.(x,t) - v(x,nh+O)l )dx and

(Iu(x,t 2) - u(x,(n+k)h+O)I + IV(x,t 2 ) - v(x,(n+k)h+O) I )dx

we have similar estimate.

Combining the above estimates, we obtain

2 sup V U('t) + sup V r(',t) +
O<t<T -O 0<t<T -c

I~ i
+ 2 X h sup U + 2 sup V 2 h

m+n+i+l=even m+n+i+1=even

Since (2.8) (2.9(2.10)and (2.11), we obtain (2.12). Q.E.D.



13.

3. Convergence of the Difference Solutions

Because (u,r) (x, .t) is not an exact solution of (0.1) in the

Tstrip kh < t (k+l)h,k = 0,1,..., E so in order to prove the

existence of the weak solution of (0.1), and (0.2) we first prove

two lemmas.

Lemma 3.1. If x' = 1tt is a 1-schock wave of (i~

(x, t, (m+l) ,k, (u ivt)(uriv)r in the domain {(x,t): m < x <(m+2)t,

kh< t < (k+l)h, m+k even) then

I~u) -1 (2 1f< wt 0IUm-ULi + IVM-vtI (3.1)

EI1V] -u Iu]I wt I( UM-u I + V _vLI (3.2)

provided h is small enough, where x' - x - (m+l)k, t' =t -kh,

the constant w depends only on U,V, u0(xW, r0 (x); (uzlvy.) =(u'v)

((m+a k) Z,kh-O),(u r v = (u,v)(m+2+a k ),kh-01; (um,vm) is the.

constant solution being connected to (u,vt,) by 1-shock wave on

the left; I ] denotes the jump of the quantity in bracket across

the 1-shock wave.

For x1 = Ft' is a 2-shock wave'of (ii, ') we have same kind-

of result.

Proof: It follows from that (u r ,vr ) and (u , v ) satisfy Rankine-

Hugoniot condition and (0.5) (2.8) (2.11) that

Ellul ~ ~ ~ ~ ~ in i-]: l(i- 't -

v9
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V toVt

RiU~ttI+ e-1 dil - VM e-n dn

N- IiU'd t' + i(vp -VM)( 1 * e) I- +
J V~ edn + e v*

0

Vt'

+ ~ VMi e-ndnI.wt'(uu,I + IvmvLI)

V~t

where (UtVt) =(UiV) (u.t,v,(m+l).t,kh) ,(Um,Vm) =(UV) (w,vm, (m+l) 1,kh)

V*31 V (ug v*, (M+1)t, kh) , V (u.,uI vm, (m+l) tokh);

V* O M+ (l-0)vz, 0<6<1 .The proof of (3.2) is similar. Q.E.D.

Lenuna 3.2. If (i,)is a 1-rarefaction wave in the subdomain

a= 1 ((xtfl ; 0 < f, <Ell 0--r t'< h) of the domain 02 {(X,t) ,

ml .5x < (m+2),t, kh < t < (k+1)h, m+k=even} ; then

f(t + I .x+ Udxdt + f O uds Ldtj

01 an1  1
3 2 ElttR Rh + R h ( V u(kh.Oj + V v(.,kh+O)) (3.3)

If (V Xt- ux +V)dxdt + f v>(dx - uXdtl

3E t

R Rh 3+ IR h 2( u(,kh+0) + LV v(',kh+O) (3.4)
1 2 to~0 t o0t



provided h is small enough.

Where x' x - (m-il) Z, t=t-kh; =(i,l) (x,t, (m+l) k, (u,v)

(m+ak )9,kh-O),(u,v)((m+2+ak )1, kh-0)), * and X are smooth

functions with compact support in 0<t<T ; R and R2are comstants

depending only on U,V,u0 (x), r0 (x), * and X ,(U,V) = (U(u,v,x,t),

V(U,V,x,t))

For 0i,40 is a 2-rarefaction wave .in the subdomain

f2={(x,t);-V <x- <E~ 0<t<h )of the domain Q , we have same kind
2 1 fr 2

of result.

Proof: (ii,i'), as a 1-rarefaction wave in 01, satisfies (0.7) in

ain classic sense. Because of (0.5) and (2.9), U and V, as the

functions of u and v, satisfy Lifshitz condition with the Lifshitz

constant depending only on Kl~ R and Q.

It follows from (1.2) (1.6) that

au a Z a aa Daa;/+ +~a t (3.5)

+ua 2- 2M. + E 2k )to + U(3.6)

at i

av ai ' - -1 a i

ax a
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t-- (Vt
av a v -1 'v1 a-- av -V ) +3e- (3.8)

where (U,V) = (U,V) (ui, (m+l)£,kh)

(-)
au V

Let J (x,t)= 2 + - U, then we obtain

I u a~ -2

Jl(x,t) = rt + at + --! to + U - Pr) e .

-1e + t' e " au a + v x/- -

- -- 2 a (aa + 2u a) -3
Ur) ax +  -t () e

Tu x+ - x v .x

Using (0.5) and (0.6) for estimating U - U, then we get

If (uf + + Uf)dxdt + u1dx - (dt (X,t) (x,t)dxdt <

R h 3.+ R2h V u(-kh+o) + V v(.,kh+O)).

The proof of (3.4) is similar. Q.E.D.

We use the difference scheme introduced in section 2 and take
h rm 29+0 T h

the ratio of the mesh lingths - e and hi . When

i is large enough, the difference solution (u,v)(x,t) can be defined

in O<t<T.
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The difference solution (u,v(x,t) is discontinuous at the

segment {(x,t): x - mij, khi < t < (k+l)hi m+k=even) But it

follows from (0.6), (2.8) and (2.11) that

f(k+l)hi 
(k+) hi

kf (u(m i +0,t) - u(ml i-0,t))X dtj < fk (t-kh i)I U((u,v)((m+a k )z
hi i

(m+l)zi.,khi) -U((u,v) ((m+a k)9.,(m-l)t.,kh iX dt < E h (3.9)

If__ __ -k l h - c dtI (3.10)
v~i+O~t) V(mt -0,t) <Eh

kh1 /

provided i is large enough, where E is a constant depending

only on K2, M and Q

With Lemma 3.1, lemma 3.2 and (3.9),(3.10) in mind by the

way similar to these in the section 4 in [7] we obtain the

following existence theorem.

Theorem 3.1. Suppose that u 0(x) are bounded functions with

bounded variation, v 0(x) has a positive lower bound. U(u,v,x,t),

V(u,v,x,t) are smooth functions satisfying (0.5) (0.6) and do not

depend on x as IxI>m, where M is any given positive number,

then for any given T >0 the initial value problem (0.1) and (0.2)

has a weak solution in 0< t<T.
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4. Asymptotic behavior

Now we consider the asymptotic behavior of the solution of

(0.1) and (0.2) under the following additional restrictions on

U and V:

R depends only on r, and R' Cr) < - ai; (4.1)

S depends only on s, and S'(s) < - ai (4.2)

where ax is a positive number.

Lemma 4.1. Suppose that R(r) satisfies (4.1), then the

initial value problem /
{dr =R(r) (4.3)

r(0) r= 44

possesses a unique solution r(t,r 0  satisfying

Ir(t,r 0 )- F I rO-Fl e -at for t > 0 (4.5)

where F is the unique solution of R(r) = 0; and for

r 0+R(r0 It , 0 < t < h

rh(t rO)0 r h(h,rO) + R(r h(h,r 0))(t-h) ,h < t < 2hth ue'

Th(nh,ri + R (nh, r )(t-nh), nh < t < (n+l) k

difference solutions of (4.3)(4.4), the following inequality holds
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Irh(t,rO) -71 _ -r01 e-at for t > 0 (4.6)

provided h <

Proof. Since the assumptions (0.5),(4.3) and (4.4) possesses a

unique solution r(t,r0) for all t > 0. By (4.1) we have

d(r(t,r0) - r)

dt = R(r(t'r 0)) = -a(r(t'r0 )- r)

and therefore (4.5).

Now we turn to prove (4.6).

Without loss of generality we assume r0 7 1, because of
rh(t, E r- (t'F

For definiteness suppose r0 > . It follows from (0.5)(4.1)

that for any i > T and t0 > 0 the initial value problem

(dr
- = R(r) has a unique solution r(t,r,t0 ) such that

ri
t-t 0

d2 r(tf,t0)
> 0; thereforedt2

< rh(tr 0 ) < r(t,r0 ) for t > 0 (4.7)

provided h < .a

Similary for r0< F we have

r(t,r 0)< rh(t,r0)< r for t > 0 (4.8)

By (4.5) (4.7) (4.8) we obtain (4.6).
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Lemma 4.2. Under the assumption (4.1) and (4.2) we have

F(k+l)h-0) < (1-(l-c) ah)F(kh+0), for k > 0 (4.9)

1
provided h < min(! ), where c is a constant depending only

on _V u (.', _V (o , the positive lower bound of v0 (x) and
G 0 CO 0 0

the equation (0.7).

Proof: Now we consider (ia,v)(x,t,(m+l),k,u£,v£,urV r ) defined

in section 1 again and first remind some results in [2] and [7].

2
There is a c function f(x) satisfying

f(x)= constant for x > 0

0< f'(x)< 1, f"(x) < 0, for x < 0 (4.10)

lir f'(x) = 1
X-0. --O

such that (um, Vm) is connected to (u ,v ) by 1-wave if and only

if

srm - s = f(rm - r,) (4.11)

where rm - r£ > 0 means that the 1-wave is a 1-rarefaction wave,

and rm - r, < 0 means that the 1-wave is a 1-shock wave; and

(Ur ,v) is connected to (u£,v£) be 2-wave on the left if and only

if

v r - rm = f(Sr-Sm )  (4.12)

8r - s > 0 (Sr - S < 0) means that the 2-wave is a 2-rarefaction

wave (a 2-shock wave respectively).



( 21.

By the notation of (2.1) and (2.4) we have

6r =Ar + f (As) 8 6s -as + f (Ar) (4.13)

Because of (4.10) we get

A= p(6r,6s) , As = q(6r,6s) (4.14)

where p,q E c 2  It is easy to know from simple computation

that

1 -fl(p)
=~ lf(f(q (6 r) -=f'(p) f (q)

(4.15)

irs 1- p q=1(p)f' ) k) !-:,() W

Suppose that (umev M) is connected to (uL vLt) by a 1-shock

wave on the left. Since (0.5) (1.3) and (4.1), then we have

sm-st <(sm + hS(sm)) -(s1+hS(st)) < 0

(r.-r.< (rm+ hR(rm)) -(r,+hR(r,)) < 0

therefore P((u Z,h' vi,h), (um,hF %m,h)) < P(u9,'vt), (um'vm)) (4.16)

where u u~ +U~ 1h vi Vi exp( W~u ,v.)h

Uih +U i.vi V h

i can be L, mi, or r.
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Suppose that (urnIv m is connected to (ut ,v,) by a 1-rarefaction

wave on the left. Since (0.5) (1.3) and (4.1), then we have

sm + hS(s) s z + S(s Z)

0 m+ hR(rm) - (r, + hR(r,)

therefore

(Lh' vth), (um h' vmh)) P((ut~vt) (Umi vm))~= 0 (.7

The same kinds of results as (4.16) and (4.17) can be obtained

for a 2-shock wave and a 2-raref action wave in (Z,)respectively.

By combining the estimates (4.16),(4.17)and (2.3) we have

F((k+l)h-0) < F(kh+0) for k > 0 (4.18)

therefore for DV r(.t) and DV s(.,t), the decreasing variation

of r(x,t) and s(x,t) on the interval (~o,+0,the following

inequalities hold

+W0 +cc

DV r(*t) < F(0) < ( V r0(. + V s0-)= 01
-0-00 -CO

+W +00(4.19)
DV s(,t)< P(0).j ( V r 0(. + V s0(0)) = 0

00 -00 -o
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It is not difficult to know from (4.20) that the strength of

the shock wave in ((,) is less than all i.e.

IArI < 1 for 1-shock wave (4.20)

IAsI < Q1 for 2-shock wave (4.21)

Since (4.10) then

0 < c f'(-Q) < 1 (4.22)

Now we are ready to obtain the refinement of (4.16) suppose that

(UmV) is connected to (uL,vZ) by a 1-shock wave on the left. By

(4.15) we have

P((U1,h' v1,h),(umh, Vm,h)) - P((u£, vj), (um,vm)) =

6rln 1-f (p) d + a f (q) d > (-c)(( rh- r) +

f 1-f "(p) f I W I 1-fl3TTf(q) d ±c ir~r
6r as

+ (a h-6S > (1-c)h [(R(rm) - R(r.) + (S(sm) -S(sd))]

- (1-c)c h Ar (4.23)

where tSr k  (rm + hR(rm)) - (r. + hR(rd)

ash - m + hS(s m ) ) - (s + hS(s))

Suppose that (ur , vr) is connected to (UmVm) by a 2-shock wave

on the left. Similarly we have
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PCCUm,h' Vmh), (Ur,h' vr,h)) - (u m  vm ) ( u rr v r))_

> -(1-c) a h As (4.24)

By combining the estimates (4.23)(4.24)(4.17) and (2.3), we have

F(k+l)h-0) < (l-(l-c) ahIF(kh+0) .Q.E.D.

We turn now to proving the existence of the weak solution

of (0.1) and (0.2) and studying its asymptotic behavior. We use

(u,v) (x,t) to denote the difference solutions of (0.1) and (0.2)

before for convenience, although the difference solutions of (0.1)

and (0.2) depend on the mesh length h and the sequence a. In

order to distinguish between the difference solutions of (0.1)

and (0.2) and the weak solution of (0.1) and (0.2), from now on

we use (uh,vh) (x,t) to denote the difference solutions of (0.1)

and (0.2) and (u,v)(x,t) to denote the weak solution of (0.1) and

(0.2).

Theorem 4.1. Suppose that u0 (x), v0 (x) are bounded functions with

bounded variation and do not depend x as lxi> M, v0 (x) has a

positive lower bound. U,V are smooth function satisfying (0.5),(0.6)

(4.1) and (4.2) then the weak solution (u,v)(x,t) of (0.1) and (0.2)

exists in t > 0 and satisfies the following decay laws.

I
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+00)at-a (4.25)
V u(.,t) < 2Q1 e-(l-c)ct + e

S v(,t < e(l - c)t + e-t (4.26)
V log v( )<20Q1 e2

I~ t - 2.1 -(l-c)att 3 e-cat (4.27)I ~~t - <2 Q + If ()2 e

log v (X,t) - j]~ 20, e-(1-C) at + 3 Q2  t (4.28)

where = V ro(.) + V s('.), Q2 - -(Iro(-)-7F + 1ro(+0)-FI

+ Is(00)~i-00 0

+ Is + Is 0 (+ )-sI), F and i are the unique solution of

R(r) = 0 and S(s) = 0 respectively, c = f'(-Ql)o

Proof. If we choose the ratio of the mesh lengths

II
- const > e2 + 2Q1

where r*= max(r0 ( -00),r- ,s* = max(s0 (-00),s), and h = 2- , where1

i is large enough such that h < min(l, 1K1) then the difference

solution (u ,vh )(x,t) defined in section 1 can be defined in all

half plan t > 0 because that Irhl-0,t) < r, Ish (-00,t) I < s*+CD +W

by Lemma 4.1 and V rh(.,t) < 2Q1 , V s (,,t) < 2Q1 by (4.19).
-00 -00

By Lemma 3.1 and Lemma 3.2 we can obtain the existence of the weak

solution (u,v) (x,t) of (0.1) and (0.2) in t > 0 in similar way*

to that in theorem 3.1.

........ T...~. .............. _,_ _



26.

Using (4.9) and F(kh+O) < F(kh-O), k =1,2,..., we obtain

F(nh+0) < (l-(1-c)cth)11F(O) = (l-(l-c)clh)n 01

then thus

+Cc h
DV r (.,nh+O) < (l-(1-c)cth) fQ 1
-00

(4.29)

h n
DV s (-,nh+O) < (l-(l-c)cth) Qi

It is not difficult by the means similar to this in Lemma 4.2 to

know that

DV rh(*,t) < DVr (nh+O)

h h ,for nh < t < (n+1)h. (4.30)

DV 5 INt <D s (.,nh+O)

let i tends to infinite, by (4.29) we have

DV r(*,t+O)< 1Q o t -
1 e1C)tt or =j2 and k,j are any

IPositive integers (4.31)

Therefore by (4.30) and (4.31) we obtain

-(1-c)at{~ :7for t > 0 (4.32)

DV a(,t) <0 1
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It follows from (4.6) that

there fore

Thus then

V r(-,t) < 2Q1 e( 1 ) + (Ir 0 (-) + r0(-ilea

-W

V s(*,t) < 20 e- (l-cOt + (ISo(c)~ + Is (+-)-s)e- t
-w (4.33)

+W
Ir(x,t)-iI V r(e,t) + Ir (-Go)-Fleat

I S(X, t) -" < V s(*,t) + I -)gea

The estimates (4.25),(4.26),(4.27) and (j4.28) follow from (4.33).

Q.E.D.

- - Noma
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5. Entropy Condition

The entropy condition for quasilinear hyperbolic systems of

conservation laws has been extensively studied by Lax, P.D. [3],

Dafermos, C.M [1] and Liu, Tai-Ping [4]. Here we will prove

a theorem about entropy condition for the weak solution of (0.1)

and (0.2) obtained in Section 3.

Theorem 5.1. Under the same assumptions of theorem 3.1, the

weak solution (u,v)(x,t) of (0.1) and (0.2) constructed in

theorem 3.1 satisfies the following entropy condition:

SgrE + gx F1+ g(u0 - 1v > 0 (5.1)Hf v
0<t<T

for any non-negative smooth function g with compact support
2u2  u.

in 0< t <T; where E(u,v) = - log v, F(uv) = .

Proof. Suppose (u ,v ) is connected to (u,,v£) by a 1-shock wavem m

with the speed of propagation sI on the left in the solution of

(0.7), let G(vm, (ui,vt)) = s 1 (E(u m ,vm) - E(u£,v)) - (F(um,vm) - 1
F(ut v )), then we have

G(v' ,(ui,v,) -0

G(v (uv )) > 0

because s < 0, vm > v. for a 1-shock wave in the weak solution

of (0.7).
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Therefore

G (vm, (ut~vt) > 0 (5.2)

Suppose (u rv.) is connected to (umivm) by a 2-shock wave

with the speed of propagation s 2 on the left in the solution

of (0.7). Let G(v ri(Umvm)) = S2 (E urIVr) - E(umivm))-

(F(uyV) -v F(um,vm)), then similarly we have

G(vri(iimiVm)) > 0(521

Using (3. 3) (3. 4) (3. 9) and (3. 10) , we have

(g~ E h+ g Fh + g(u hU h- V )dxdt O (h) + I +1 (53j V 1 12 (53
t<0<TV

Here

hh h
I, I g(x,nh)(E(u h r h)(x,nh-0) - E(uh ,Vh (x,nh+O))dx (5.4)

n-l

1- 2 g [Eh I- I ld (5.5)
m+n=even no
i=1,2 0

where 5m,n,i is the speed of propagation of the i-shock wave in

t'int-nh. P.3 denotes the jump of the quantity in the bracket

across the shock wave. E h= E((u hVh )(x,t)), F h F((u hVh )(x,t)).

Using (3.1) (3. 2) , we have

1 2 O (h) + 112(56

where 11 2 L J(s mniE(i) -(Fuvdt

2 m+nieven 0
1.-1, 2
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By (5.1) (S. 2), we h ave

it2 > 0 (5.7)

The entropy condition (5.1) follows from (5.3) (5.4) (5.5)

(5.6) and (5.7).
Q.E.D.

Ile-
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